Transcriptome analysis indicates considerable divergence in alternative splicing between duplicated genes in Arabidopsis thaliana.
نویسندگان
چکیده
Gene and genome duplication events have created a large number of new genes in plants that can diverge by evolving new expression profiles and functions (neofunctionalization) or dividing extant ones (subfunctionalization). Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or downregulation of gene expression by transcript decay. Using RNA-seq, we investigated the degree to which alternative splicing patterns are conserved between duplicated genes in Arabidopsis thaliana. Our results revealed that 30% of AS events in α-whole-genome duplicates and 33% of AS events in tandem duplicates are qualitatively conserved within leaf tissue. Loss of ancestral splice forms, as well as asymmetric gain of new splice forms, may account for this divergence. Conserved events had different frequencies, as only 31% of shared AS events in α-whole-genome duplicates and 41% of shared AS events in tandem duplicates had similar frequencies in both paralogs, indicating considerable quantitative divergence. Analysis of published RNA-seq data from nonsense-mediated decay (NMD) mutants indicated that 85% of α-whole-genome duplicates and 89% of tandem duplicates have diverged in their AS-induced NMD. Our results indicate that alternative splicing shows a high degree of divergence between paralogs such that qualitatively conserved alternative splicing events tend to have quantitative divergence. Divergence in AS patterns between duplicates may be a mechanism of regulating expression level divergence.
منابع مشابه
Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis.
Gene duplication at various scales, from single gene duplication to whole-genome (WG) duplication, has occurred throughout eukaryotic evolution and contributed greatly to the large number of duplicated genes in the genomes of many eukaryotes. Previous studies have shown divergence in expression patterns of many duplicated genes at various evolutionary time scales and cases of gain of a new func...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملDuplicate Gene Divergence by Changes in MicroRNA Binding Sites in Arabidopsis and Brassica
Gene duplication provides large numbers of new genes that can lead to the evolution of new functions. Duplicated genes can diverge by changes in sequences, expression patterns, and functions. MicroRNAs play an important role in the regulation of gene expression in many eukaryotes. After duplication, two paralogs may diverge in their microRNA binding sites, which might impact their expression an...
متن کاملHigh-Throughput RNA Sequencing of Pseudomonas-Infected Arabidopsis Reveals Hidden Transcriptome Complexity and Novel Splice Variants
We report the results of a genome-wide analysis of transcription in Arabidopsis thaliana after treatment with Pseudomonas syringae pathovar tomato. Our time course RNA-Seq experiment uses over 500 million read pairs to provide a detailed characterization of the response to infection in both susceptible and resistant hosts. The set of observed differentially expressed genes is consistent with pr...
متن کاملPatterns of alternative splicing vary between species during heat stress
Plants have evolved a variety of mechanisms to respond and adapt to abiotic stress. High temperature stress induces the heat shock response. During the heat shock response a large number of genes are up-regulated, many of which code for chaperone proteins that prevent irreversible protein aggregation and cell death. However, it is clear that heat shock is not the only mechanism involved in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 198 4 شماره
صفحات -
تاریخ انتشار 2014